
Enstore Small Files Aggregation Messaging DLD

Alex Kulyavtsev

3/16/2011 v0.13

1 Introduction

To impelemt Small Files Aggregation feature in Enstore we introduce several new components:
 Library Manager Dispatcher (LMD)

- Library Manager Dispatcher selects Library Manager (file cache or tape bound) to be used by
encp.

 Disk Mover (DM)
- cache frontend, the component which reads files from or writes files to cache. In the future it can
be any other Data Delivery Service (DDS) component.

 Policy Engine (PE)
- the engine to implement busines logic, e.g. to reorder requests to group files on write.

 Migration Dispatcher (MD)
- central component to dispatch execution of work items (archive, stage or purge file list) to
Migration Workerrs and track execution of requests.

 Migrator, or Migration Worker (MW)
- one of several workers distributed among Migrator Nodes responcible for execution of one item
of work: file aggregation and/or writing and reading data containers to/from tape backend.
Migrators execute vanilla encp to perform data transfer to/from tape.

To impement interaction between newly added enstore components for Small Files Aggregation feature
we plan to use Adavance Message Queing Protocol (AMQP). AMQP standartizes both messaging and
wire protocol and provides standard way to implement fast, secure and reliable communication in
language independent way. Enstore is written in Python and most Open Source Complex Event
Processing Engines to be used as Policy Engine are written in Java.

Standard Enstore uses UDP to provide communication between enstore components. To simplify
interaction between legacy enstore components and new components using AMQP we introduce UDP
to AMP proxy servers converting Enstore UDP tickets to AMQP messages and converting AMQP
replies back to enstore UDP tickets.

2 Functional specification

AMQP specifies datatypes on the wire as various integer and float data types, timestamp, UUID and
also complex data types such as map and list. Complex datatypes can be nested. This allows simple
transfer of nested python dictionaries used in enstore messages. On java side python dictionaries are
converted transparently to java Maps. Java maps can be used by Esper CEP engine to represent CEP
events. The other alternative is to use XML representation both in messages and PE, this will allow
message format check and simple message filtering by AMQP brokers. Term “map” used in discussion

below can be substituted by “dictionary” when used by python client.
We use standard AMQP features (message routing, reliable delivery, percistence, security, etc).

AMPQ message consists of Message Header and Message Body. The Message Body is opaque and
AMQP does not specify or care about its properties. Message Header consists of fields specific for
AMQP protocol. Message Header has message_properties.application_headers map

where application can put any information. At present we intend to put Enstore specific message fields
into application_headers map. The Message Body can be empty or we may use Message Body

field for bulk messages and/or when fast access to message payload is not required by messaging
system to route event. E.g. we may put full encp ticket to message body thus full original ticket is
available and we copy few fields of original ticket to message header for quick access by logic.

2.1 AMQP Low Level Python API Quick Example

The following is quick code example what data structures are available in qpid 0.6 AMQP
implementation and how the message is sent :

Example 1

#...
 import qpid
from qpid.datatypes import Message
...more...

 nested_dictionary = {
"string":"stringVal",
"int":1234,
"long": 2**32,
"map": {"string":"nested map"},
"list":[1,"two",3.0, -4]

}

#...skip ... get amqp session here ...

 # Create some messages and put them on the broker.
dp = session.delivery_properties(routing_key="this_message_destination")
message_properties = session.message_properties()
message_properties.content_encoding = "amqp/map"

set application header :
message_properties.application_headers = {}
message_properties.application_headers["my_nested_dictionary"] = nested_dictionary
message_properties.application_headers["my_tuple"] = (12345, 54321, ’hello!’)
create and send message. Message body can be empty.
msg = Message(message_properties, dp, "this is text message body")
session.message_transfer(destination="amq.direct", message=msg)

3 Enstore Message Properties

Now we define map (nested dictionary) enmsg in amqp application header to serve as enstore event or
command. The commands will be represented as constant strings in all capital letters as value.

• msg_type - component specific type of the message specifying payload, some kind of command
or event :

- command - command send to the peer.

- event - event generated in response to completed action or change of state

• msg_ver - tuple (int major, int minor)

Example 2

mp = session.message_properties()

mp.application_headers = {}

m = {}

m[“msg_type”] = “MD_COMMAND”

m[“msg_ver”] = (1, 0)

m[“command”] = “MD_ARCHIVE_FILES”

myArgs = {”a1”:”v1”, “a2”:123 }

m[“args”] = myArgs

mp.application_headers[“enmsg”] = m

4 Addressing

Policy Engine and Migration Dispatcher are singletons. They read messages from queue bonded to the
direct exchange. There are multiple Migrators, probably with different properties. A group of Migrators
with similar properties can read work-assigning messages from the same queue to implement load
balancing and HA.

The initial command assigning work is sent to direct exchange by message producer. Worker replies
are sent directly to sender using request-response mechanism described in “Server Application” section

of MRG Tutorial [Qpid Pr][Qpid UG]. Message routing_key specifies destination amqp node

(message comsumer process), for example migration_dispatcher, policy_engine, “any”

enstore file cache migrator fc_migrator or concrete file cache migrator

fc_migrator.mgr1234 (name includes “.” to separate fields).

5 Component Interaction Through AMQP Messaging

Messages specs are grouped below by message destination.

5.1 Messages sent to Policy Engine.

Data Delivery Service (enstore Disk Mover, DM) can send messages consumed by Policy Engine (PE).
PE reacts on events issued by Migrators.

5.1.1 Description
Event reflects changes in local cache or user namespace.

5.1.2 Parameters

Namespace event:
msg_type :

• FILE_DELETED – file is deleted in user namespace (Disk Mover)

File Cache events:
msg_type :

• CACHE_WRITTEN – file replica written to cache by client (enstore Disk Mover)

• CACHE_MISSED – client attempts to read file from cache and file not found in
cache. Triggers restore from tape & unpack (DM)

• CACHE_PURGED – file copy removed from cache (Migrator)

• CACHE_STAGED – file staged from tape to cache (Migrator)

5.1.3 Detailed Parameters Description

msg_type :

• CACHE_WRITTEN

- meaning: file written to cache, signals end of data write operation.

- when: close() on write

- action: aggregate write requests and prepare list of file to be written. Send command
ARCHIVE_FILES to MD when needed.

• CACHE_MISSED

- when: open() on read with cache miss - file not found in cache

- action: send command STAGE_FILES to MD to read files from tape and unpack files.

• CACHE_STAGED

- meaning : file restored from tape to cache

- action: release pending read transfers from file cache to user

• CACHE_PURGED

- meaning: file copy removed from cache

- action: delete pending requests to store file if any. File can be purged only if it has been written
to tape, otherwise this shall generate error reported by monitoring.

• FILE_DELETED

- meaning: file deleted in user namespace

- action: clear cache entry, delete pending requests to aggregate file. If multiple file aggregation
started, mark file as deleted but do not abort aggregating files.

5.2 Policy Engine communication with Migration Dispatcher

The folowing are commands executed by Migration Dispatcher and confirmation message sent out by
MD to signal operation completion.

5.2.1 Parameters

Commands:
msg_type :

• MDC_ARCHIVE – Package file list and Write to tape

• MDC_STAGE – Read from tape and Unpack file list

• MDC_PURGE – Purge cache entries (file list)

Replies:
msg_type :

• MDR_ARCHIVED– result of execution of MDC_ARCHIVE, files are archived or arhive failed.

• MDR_STAGED – result of execution of MDC_STAGE, files are staged or stage failed.

• MDR_PURGED – result of execution of MDC_PURGE, files are staged or purge failed.

5.2.2 Description
Policy Engine sends command to Migration Dispatcher. Migration Dispatcher fetches the message and
stores the message on hash,“acknowledges” the original message and then work is executed

asynchronyously. Migration Dispatcher sends message to Migrators (Migration Workers) and they
actually execute the work. Migration Dispatcher tracks worklist execution and may request worker
status of request processing. After completion of the work Migration Dispatcher sends reply message to
PE to report operation completion. The reply message contains message ID of the original message it is
reply to.

5.3 Migration Dispatcher Communication with Migrator

5.3.1 Parameters

Migration Worker commands:
msg_type:

• MDW_ARCHIVE – Package file list and Write to tape

• MDW_STAGE – Read from tape and Unpack file list

• MDW_PURGE – Purge cache entries (file list)

• MDW_STATUS – query worker status and transfer progress (sent directly to worker)

5.3.2 Description. Commands sent by Migration Dispatcher.
Operations on list of files where list may consist of single file. Migration Dispatcher controls file
packing/unpacking and also file transfer operations to/from tape by encp. MD sends commands above
to work queue where it read by Migrators. When the message retrieved from queue and work started,
Migrator sends message directly to Migrator informing it with direct address for communications.
Migrator Dispatcher may send query command to Migrator to check liveness and progress of the
transfer and Migrator replies to query command directly to Migration Dispatcher. When transfer
finished, Migrator sends final message reporting the end of transfer and error status.

5.3.3 Description. Events and replies issued by Tape Backend interface
(Migrators)

Migrator sends out event to signal operation completion when the operation is completed with success
or error. These events correspond to commands sent by Migration dispatcher to Migrators. The event is
sent asynchroniously through direct exchange to original command source. The message has reference
to original command event and reports error code and error detail of the operation.

5.3.4 Parameters

Migration Worker replies.

Final message reporting completion of work:
msg_type:

• MDR_ARCHIVED– file list archival completed or failed

• MDR_STAGED – file list staged

• MDR_PURGED – file list purged

Message reporting progress of work:

• MDR_STATUS – worker status and transfer progress

5.3.5 Return value
output : list status = [err, err_msg]

string err – error code, from e_errors

string err_msg – error message

6 Detailed Message Descriptions

6.1 CACHE_WRITTEN and CACHE_MISSED events

CACHE_WRITTEN and CACHE_MISSED events are used as input for policy decisions. These

events cause file archiving or staging. We provide following information in CACHE_WRITTEN and

CACHE_MISSED events to Policy Engine to group and/or prioritize requests. Most of the message

fields are based on the fields of enstore ticket. Some fields for write operation are not known at the

time when message sent out and thus these entries are not set as indicated below, e.g. bfid for write

operation.

The vanilla encp ticket is included in message body, the following fields are extracted into message
header to be easily accessed (see next page).

Issues :
• there is no crc in enstore write ticket.

ticket_missed = {
 ’cache’: { # -- File Cache specific fields
 ’arch’: { # archive (tape backend)
 ’id’: ’cdf’, # archive name
 ’type’: ’enstore’ # archive type
 },
 ’ns’ : { # user namespace (frontend)
 ’id’: ’cdf’, # namespace identification
 ’type’: ’pnfs’, # user namespace description
 ’mnt’: ’/pnfs/fnal.gov’ # mount point in global namespace
 }
 },

 ’file’ : { # -- data file specific fields
 # the original file name :
 ’name’: ’/pnfs/fs/usr/Migration/cms/WAX/11/file.root’,
 # file ID in user namespace. String.
 ’id’: ’000E000000000000095D5220’
 ’size’: 663748608L, # file size in bytes
 # Checksum type (key) and value :
 ’crc_adler32’: 3298525413L, # (RD only)
 },
 ’enstore’ : { # -- Enstore backend specific fields
 ’bfid’: ’CDMS115785728500000’, # (RD only)
 ’vc’: { # from Volume Clerk :
 ’library’: ’CD-LTO4G1’, #
 ’storage_group’: ’cms’, #
 ’file_family’: ’Commissioning08’, #
 ’wrapper’: ’cpio_odc’, #
 ’file_family_width’: ’2’, #
 ’external_label’: ’VOM563’ # (RD only)
 ’volume_family’: ’cms.Commissioning08.cpio_odc’, # NA for W
 },
 # file location on tape from FC, (RD only)
 ’location_cookie’: ’0000_000000000_0000174’
 }
 }

ticket_written = {
 ’cache’: { # -- File Cache specific fields
 ’arch’: { # archive (tape backend)
 ’id’: ’cdf’, # archive name
 ’type’: ’enstore’ # archive type
 }
 ’ns’ : { # user namespace (frontend)
 ’id’: ’cdf’, # namespace identification
 ’type’: ’pnfs’, # user namespace description
 ’mnt’: ’/pnfs/fnal.gov’ # mount point in global namespace
 }
 ’en’ : { # enstore file cache
 'fsfn' : “node:/mount/path/filename” # fully specified file
 # name constructed from items below
 ’node’: ’cache01’, # node name / address
 ’mount’: ’/mnt/cache’, # mount point of enstore cache
 ’path’: ’000E/0000/0000/0000/095D’, # cached file subpath
 ’name’: ’000E000000000000095D5220’, # file name in cache
 ’id’: '0x12345' # file handle in cache
 }
 },

 ’file’ : { # -- data file specific fields
 # the original file name :
 ’name’: ’/pnfs/fs/usr/Migration/cms/WAX/11/file.root’,
 # file ID in user namespace. String.
 ’id’: ’000E000000000000095D5220’
 ’size’: 663748608L, # file size in bytes
 },
 ’enstore’ : { # -- Enstore backend specific fields
 ’vc’: { # from Volume Clerk :
 ’library’: ’CD-LTO4G1’, #
 ’storage_group’: ’cms’, #
 ’file_family’: ’Commissioning08’, #
 ’wrapper’: ’cpio_odc’, #
 ’file_family_width’: ’2’, #
 },
 }
 }

6.2 CACHE_PURGED

File has been purged on disk cache.
 Issue: is it actually the same as Migration Dispatcher reply MDR_PURGED ?

CACHE_PURGED ticket is similar to CACHE_WRITTEN event, enstore dictionary entry “enstore” is

not required:

ticket_purged = {
 ’cache’: { # -- File Cache specific fields
 ’arch’: { # archive (tape backend)
 ’id’: ’cdf’, # archive name
 ’type’: ’enstore’ # archive type
 }
 ’ns’ : { # user namespace (frontend)
 ’id’: ’cdf’, # namespace identification
 ’type’: ’pnfs’, # user namespace description
 ’mnt’: ’/pnfs/fnal.gov’ # mount point in global namespace
 }
 ’en’ : { # enstore file cache
 'fsfn' : “node:/mount/path/filename” # fully specified file
 # name constructed from items below
 ’node’: ’cache01’, # node name / address
 ’mount’: ’/mnt/cache’, # mount point of enstore cache
 ’path’: ’000E/0000/0000/0000/095D’, # cached file subpath
 ’name’: ’000E000000000000095D5220’, # file name in cache
 ’id’: '0x12345' # file handle in cache
 }
 },

 ’file’ : { # -- data file specific fields
 # the original file name :
 ’name’: ’/pnfs/fs/usr/Migration/cms/WAX/11/file.root’,
 # file ID in user namespace. String.
 ’id’: ’000E000000000000095D5220’
 ’size’: 663748608L, # file size in bytes
 }
 }

6.3 CACHE_STAGED

 File has been staged to enstore file cache on disk.
 Issue: is it actually the same as Migration Dispatcher reply MDR_STAGED ?

 The ticket is similar to CACHE_WRITTEN event, enstore dictionary entries d['enstore']['vc'] and

d['enstore']['location_cookie'] are not required:

ticket_staged = {
 ’cache’: { # -- File Cache specific fields
 ’arch’: { # archive (tape backend)
 ’id’: ’cdf’, # archive name
 ’type’: ’enstore’ # archive type
 }
 ’ns’ : { # user namespace (frontend)
 ’id’: ’cdf’, # namespace identification
 ’type’: ’pnfs’, # user namespace description
 ’mnt’: ’/pnfs/fnal.gov’ # mount point in global namespace
 }
 ’en’ : { # enstore file cache
 'fsfn' : “node:/mount/path/filename” # fully specified file
 # name constructed from items below
 ’node’: ’cache01’, # node name / address
 ’mount’: ’/mnt/cache’, # mount point of enstore cache
 ’path’: ’000E/0000/0000/0000/095D’, # cached file subpath
 ’name’: ’000E000000000000095D5220’, # file name in cache
 ’id’: '0x12345' # file handle in cache
 }
 },

 ’file’ : { # -- data file specific fields
 # the original file name :
 ’name’: ’/pnfs/fs/usr/Migration/cms/WAX/11/file.root’,
 # file ID in user namespace. String.
 ’id’: ’000E000000000000095D5220’
 ’size’: 663748608L, # file size in bytes
 },
 ’enstore’ : { # -- Enstore backend specific fields
 ’bfid’: ’CDMS115785728500000’, # (RD only)
 }
 }

7 Enstore High Level Messaging API

We build enstore messaging API on qpid python High Level API. It became fully available in qpid v0.8
[Qpid Pr].

7.1 Modules

enstore/src package cache/messaging has modules as follows:

 client.py – base class EnqClient for Enstore qpid clients

 enq_message.py – base class for all enstore qpid messages

 pe_client.py – messages and replies processed by Policy Engine and base class for
Policy Engine client

 md_client.py – messages and replies processed by Migration Dispatcher and base class
for Migration Dispatcher client

 mw_client.py – messages and replies processed by Migration Worker and base class for
Migration Worker client

cache/servers/ – enstore cache servers implementation

cache/stub/ - pilot implementation for server stubs
cache/test/ - test components

7.2 AMQP Broker

AMQP (qpid) broker is identified in confguration by host name where it runs and port where it listens.

7.3 Exchanges and Queues

Enstore components use direct exchange enstore.fcache. Each server component has input queue

defined with name matching components name. More precisely, the routing key of the message is the
destination component name and by default message routing key is bonded to the queue with the same

name. The queue to process replies has “_reply” appended to name of the queue.

The following queues are defined:

lmd - Library Manager Dispatcher input queue
pe – policy engine commands and events queue
pe_reply – pe accepts replies on commands sent to MD
md – Migration Dispatcher command queue
md_reply – Migration Dispatcher waits replies here on commands

it sent to Migration Workers
mw - TBD. Migrator worker queue.

7.3 Enstore Qpid Client
Enstore qpid client is a base class encapsulating qpid connection, session(s), sender(s) and

receiver(s). In constructor we create one sender and one recever, more can be added. Sender and
receiver each have address specified: the sender has destination address where messages will be
delivered to, and receiver has address of the node where from messages are fetched. “Vanilla” enstore
qpid client has to have provided broker address (host,port), target address used by default sender and
specifying where to messages will be sent and the address “myaddr” used by default receiver to fetch
commands (or in another instance, to fetch replies).

E.g. on low level PE component connecting to qpid broker on local host, port=5672 can create client
with receiver to fetch commands from qpid queue named “pe” and sending commands to the output
queue “md”:

import cache.messaging.client as cmc

qc = cmc.EnQpidClient(("localhost",5672),myaddr="pe", target="md")

qc.start()

while True:

msg = qc.rcv.fetch()

… process message, create file list l …

cmd = MDCArchive(file_list = l)

qc.send(cmd)

On “higher” level each cache server component has corresponding client class having one or more
EnQpidClient instances, e.g. MD class to implement Migration Dispatcher functionality will
instantiate two EnQpidClient : one client to read events and send commands to MD, the other to
read MD replies.

The component class (MD class here) is further customized in the server level component class (here
MDs) class by injecting knowledge of enstore configuration. MDs communicates with enstore
configuration server to get broker configuration, names of input/output queues and creates MD class
with proper queues specification.

Here is example of Migration Dispatcher server MDs instantiating MD class:

get configuration dictionary from Enstore configuration server
self.conf = self.csc.get(MY_NAME)
self.amqp_broker_conf = self.csc.get("amqp_broker")

get broker address and message queue names from configuration
brk = self.amqp_broker_conf['host_port']
queue_in = self.conf['queue_in'] # this is 'md' (migrator disp. command queue)
queue_out = self.conf['queue_out'] # this is 'mw' (migrator worker queue)

instantiate file cache component:
self.md_srv = md.MD(amq_broker=brk, myaddr=queue_in, target=queue_out)

On application layer server enstore server instantiate top level component such as LMDs and it
communicate with configuration server and instantiate 'component level' client with proper
configuration.

7.3.1 EnqClient methods
__init__(self, broker_host_port, myaddr=None, target=None) – constructor.

 broker_host_port: (host,port) of the qpid broker

 myaddr: qpid address (queue name) where from default reciever fetches messages

 target: qpid address (queue name) where to default senders sends messages

configure() – hook for subclass to provide extra configuration

start() – create connection to qpid broker, session, default receiver and sender.

stop() – close session and connection.

receiver(self,addr,name) – create additional receiver named “name” to fetch
messages from remote node “addr”

addr: string, source address (queue name)

name: string, receiver name

sender(self, addr,name) – create additional sender named “name” to send messages to
remote node “addr”

addr: string, destination address (queue name)

name: string, sender name

send(self, msg, *args, **kwargs) – send message msg through default sender snd
to associated address.

 msg: qpid message. Message to send.

 args, kwargs – extra arguments for qpid Sender

fetch(self, *args, **kwargs) – return message fetched from default receiver rcv
(connected to address set in constructor)

args, kwargs – extra arguments for qpid Receiver

returns: qpid message

7.4 Enstore Qpid Messages
EnqMessage is a base class for all Enstore qpid Messages. It is defined in module
cache/messaging/enq_message.py. EnqMessage inherits from qpid Message class, thus all enstore
messages are qpid amqp messages. EnqMessage provides nessasary qpid message customization by
setting values message fields like id, correlation_id and by setting message properties, where we set
enstore message type, message version.

The following message classes derived from EnqMessage:
class PEEvent(EnqMessage) – base class for all Policy Engine events
class MDCommand(EnqMessage) – base class for all MD commands
class MDReply(EnqMessage) – base class for all replies processed by MD
class MWCommand(EnqMessage) – base class for all MW commands
class MWReply(EnqMessage) – base class for all replies processed by MW

Classes for concrete command or reply derived from proper class above, e.g. Migration Dispatcher
ARCHIVE command is derived from generic MDCommand class:

class MDCArchive(MDCommand)

Under the hood, valid message types are defined in class MSG_TYPES in module

cache.messaging.messages . For instance, MDCArchive sets message type to

cache.messaging.messages.MDC_ARCHIVE, which has value of string “MDC_ARCHIVE.” Strong typing

enables early code checking in IDE and code integrity, message type representation as a string
simplifies debugging. Class MSG_TYPES also contains names for commont operations (ARCHIVE,
DELETE, PACK, PURGE, STAGE, UNPACK), states (ARCHIVED, DELETED, PACKED,
PURGED, MISSED, STAGED, WRITTEN, CREATED, UNPACKED) and status (STATUS) defined
as strings.
Quick example, create MD archive file list command and reply to the command:
>>> import cache.messaging.md_client as mdc

>>> f1=[1001,0x1,"file_A", "lib_A"]

>>> f2=[1002,0x2,"file_B", "lib_B"]

>>> l=[f1,f2]

>>> m=mdc.MDCArchive(l)

>>> r=mdc.MDRArchived(m,l)

>>> m

Message(correlation_id=UUID('315457aa-e4b8-4a97-83c6-6d3f9c514588'),

properties={'version': (0, 1), 'type': 'MDC_ARCHIVE'}, content=[[1001, 1, 'file_A',

'lib_A'], [1002, 2, 'file_B', 'lib_B']])

>>> r

Message(correlation_id=UUID('315457aa-e4b8-4a97-83c6-6d3f9c514588'),

properties={'version': (0, 1), 'type': 'MDR_ARCHIVED'}, content=[[1001, 1,

'file_A', 'lib_A'], [1002, 2, 'file_B', 'lib_B']])

7.4.1. Policy Engine Events.
Policy Engine events are defined in module cache/messaging/pe_client.py
PEEvent(EnqMessage) – base class for all Policy Engine events

Events defined as classes derived from class PEEvent:

EvtFileDeleted() File deleted in Namespace
EvtCacheMissed() Client attempted to read file from cache and file not found in
cache.
EvtCachePurged() File replica removed from cache (Migrator)
EvtCacheWritten() File replica written to cache by client (enstore Disk Mover)

EvtCacheStaged() File staged from tape to cache (Migrator)

7.4 Migration Dispatcher Commands and Replies.
Migration Dispatches messages are defined in module cache/messaging/md_client.py

Migration Dispatcher command messages inherit from generic MD command - base class MDCommand.

Migration Dispatcher reply messages inherit from generic MD reply – base class MDReply. All

Migration Dispatcher commands and replies inherit from Enstore Qpid Message class EnqMessage.

class MDCommand(EnqMessage): # base class for MD commands

class MDReply(EnqMessage):# base class for replies processed by MD

Class named to have two first letters matching component name, third letter is 'C' for
Command and or 'R' for Reply, the rest is action or status name:

MDCArchive(file_list = l)

MDCPurge(file_list = l)

MDCStage(file_list = l)

MDRArchived(file_list = l)

MDRPurged(file_list = l)

MDRStaged(file_list = l)

7.5 Migration Worker Commands and Replies.
Migration Worker messages are defined in module cache/messaging/mw_client.py

Migration Worker command messages inherit from generic MW command - base class MWCommand.

Migration Worker reply messages inherit from generic MW reply – base class MWReply. All

Migration Worker commands and replies inherit from Enstore Qpid Message class EnqMessage.
class MWCommand(EnqMessage): # base class for MW commands

class MWReply(EnqMessage):# base class for replies processed by MW
Class named to have two first letters matching component name, third letter is 'C' for Command or or
'R' for Reply, the rest is action or status name:

MWCArchive(file_list = l)

MWCPurge(file_list = l)

MWCStage(file_list = l)

MWCStatus(request_id = id)

MWRArchived(file_list = l)

MWRPurged(file_list = l)

MWRStaged(file_list = l)

MWRStatus(content)

References

[Qpid Pr] Jonathan Robie, Chuck Rolke, Alison Young, "Red Hat Enterprise MRG 1.3. Programming
in Apache Qpid", Red Hat, Inc, 2011
[Qpid UG] Lana Brindley, Alison Young, "Red Hat Enterprise MRG 1.3. Messaging User Guide", Red
Hat, Inc, 2011

	1 Introduction
	Library Manager Dispatcher (LMD)
	Disk Mover (DM)
	Policy Engine (PE)
	Migration Dispatcher (MD)
	Migrator, or Migration Worker (MW)
	2 Functional specification
	2.1 AMQP Low Level Python API Quick Example
	Example 1

	3 Enstore Message Properties
	Example 2

	4 Addressing
	5 Component Interaction Through AMQP Messaging
	5.1 Messages sent to Policy Engine.
	5.1.1 Description
	5.1.2 Parameters
	5.1.3 Detailed Parameters Description

	5.2 Policy Engine communication with Migration Dispatcher
	5.2.1 Parameters
	5.2.2 Description

	5.3 Migration Dispatcher Communication with Migrator
	5.3.1 Parameters
	5.3.2 Description. Commands sent by Migration Dispatcher.
	5.3.3 Description. Events and replies issued by Tape Backend interface (Migrators)
	5.3.4 Parameters
	5.3.5 Return value

	6 Detailed Message Descriptions
	6.1 CACHE_WRITTEN and CACHE_MISSED events
	6.2 CACHE_PURGED
	7.3 Enstore Qpid Client
	7.3.1 EnqClient methods
	7.4 Enstore Qpid Messages
	7.4.1. Policy Engine Events.
	7.4 Migration Dispatcher Commands and Replies.
	7.5 Migration Worker Commands and Replies.

	References

